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The reaction yielding the ferrous complex which 
takes place in solution upon addit ion of 2,2 '-bipyridine 
to a solution of a ferrous salt can only lead to the 
format ion of a stable f ive-membered ring consisting 
of N~-C1-C~-N~ and the Fe ++ ion if the two nitrogen 
atoms are in the cis positions. Since in the solid crystal- 
line form the nitrogen atoms lie in the trans positions, 
there must  be rotat ion about  the C1-C~ bond in solution 
in order for complex formation to be possible. The 
observed length of this bond would indicate tha t  such 
rotat ion would be easily possible in solution. 

The molecules in the uni t  cell of 2,2 ' -bipyridine 
show no unusual ly  close approaches. The shortest 
intermolecular  distances are 3-11 A between the H s 
bonded to the C a in one ring and the C~' of the next  
molecule, and 3.12 A between H 9 bonded to C 5 in one 
molecule and H'7' bonded to C~' in the next  molecule. 
Since the van der Waals  radius of a carbon atom is 
about  1.7 A and tha t  of a hydrogen atom is about  
1.3 J~, this indicates tha t  the only forces between the 
molecules in the crystal  are weak van  der Waals  forces. 
This is supported by the low mel t ing point  (69.5 ° C.) 
of this  compound and also by  the tendency of these 
crystals to subl ime slowly in air at  room temperatures.  

The authors wish to express their  thanks  to Dr 
A. E. Lessor, J r  for his aid in the calculations in- 
volved in this structure determinat ion.  
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For the normal heavy-atom method of solving crystal structures the Fourier series, whose coeffi- 
cients are given in moduli by the observed intensities and in phase by the heavy-atom contribution, 
is summed. It  is shown that  a Fourier series with coefficients quite different from these shows the 
unknown part of the structure more clearly. A criterion for determining the degree of resolution 
of a structure is given and the advantage of the new series is demonstrated both theoretically and 
by means of practical examples. 

I n t r o d u c t i o n  

The 'heavy-a tom'  method of solving crystal  structures 
is most f requent ly  used for centrosymmetr ica l  struc- 
tures when one pair  of atoms is sufficiently heavy  to 
be detected by  the Pat terson function. Wi th  the ob- 
served structure ampli tudes  and phases given by  the 
contr ibut ion of the known atom, a Fourier  synthesis 
is calculated from which the position of the remaining 
atoms m a y  be found. If the known atom is not  heavy  

* Now at the Physics Department, College of Science and 
Technology, Manchester 1, England. 

enough to dominate  the phases of the complete struc- 

ture, the remaining atoms will not show themselves. 
On the other hand,  if the known atom is too heavy  
the relative contributions of the unknown atoms to 
the structure factors will be comparable in size with 
the exper imental  errors of the latter. The peaks of the  
Fourier  synthesis due to random errors will then  be 
of the same order as a peak height  for one of the 
unknown atoms, whose positions will not be deter- 
mined with any  certainty.  

Luzzat i  (1953) has given a theoretical  t r ea tment  of 
the heavy-a tom method as par t  of a more general  
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paper which deals with the resolution of crystal struc- 
tures when the positions of some atoms are known. 
The cases he considered are" 

(a) two known atoms in a centrosymmetrical struc- 
ture; 

(b) many known atoms in a centrosymmetrical struc- 
ture; 

(c) many known atoms in a non-centrosymmetrical 
structure. 

Luzzati suggested a criterion for deciding the degree 
of resolution which would be obtained in each of these 
cases. 

The present paper deals primarily with case (a), 
and will briefly mention case (b). I t  will be shown that  
a Fourier synthesis with amplitudes and phases dif- 
ferent from those normally used resolves the structure 
more clearly than the usual 'heavy-atom' synthesis. 
A criterion, different from that  used by Luzzati, will 
be used to compare the resolution of structures in the 
two cases, both in theory and by means of practical 
examples. I t  will be assumed that  there are no ex- 
perimental errors in the observed data. 

Derivat ion and propert ies  of the new Fourier  
ser ies  

We shall consider a centrosymmetrical structure with 
N atoms per unit cell and with two atoms (related by 
a crystallographic centre of symmetry) in known 
positions. The atoms are assumed to have the same 
shape so that, for the j th  atom, 

iV 
ni = fi/~Y,f i 

i=1 

is a constant throughout reciprocal space. 
We may write 

f1 = Ohni ,  ( l )  

where Oh is a function of sin 0, or alternatively of the 
position in reciprocal space denoted by the vector h. 

Then 
iV 2¢ 

~'h = ~" fj COS 2z~h. r i = 0h ~ '  n i cos 2zeh. rj = Oh Uh, 
/=1 i=l  

where Uh is the unitary structure factor. 
• However, 

~r 
Uh = ~ n/cos 2z~h- r i+2n  E cos 2z~h. rH,  

]=a 

where the subscript H denotes the value of the quan- 
t i ty for the atoms of known position. 

Then 
~r 

~ ' n j  cos 2 : th . r j  = Uh--Ch, 
i=a 

where 

AC9 

Ch = 2nB cos 2 z h . r H .  
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The sign of Uh is unknown, but if UhCh is positive 
and Sc is the sign of Ch then 

~r 

Z n j  cos 27~h.rj = Sc{IVh]--lVhl}, (2) 
]=a 

while if UhCh is negative 
1g 

~ n j  cos 2 : r h ' r i  = --Sc{[Vh[ +]Ch[}. (3) 
i=3 

The ratio of the probability that  UhCh is positive, 
P+(UhCh), divided by the probability that  UhCh is 
negative, P-(UhCh), may be found from the prob- 
ability distribution of structure factors given by Wilson 
(1949), and is 

P+(UhCh) exp {-2--~ (I Uh[ -- ICh[)~} 
- = exp (~ I UhCh,) , 

P - ( U h C h )  exp{_2__~e, (i Uh[ + iCh[)~ } 

where 

Since 

we find 

and 

N 
e' = 2 n ~ .  

j=a 

P T ( V h C h )  + P - ( C h V h )  --- 1 , 

(4) 

(5) 

For a given pair of values ]U hl and Ch, the average 
value of 

~v ni cos 2gh .  r i 
will be j=a 

Sc{ I U h ] -  ] Chl}P-t- ( U h C h ) - - ~ { [  Uhl + IGhl}P-(UhGh), 

or  

zV 

In  the case where the sign of Uh is indicated .by the 
value of Ch it can be seen that  the quantity 

is playing the same role, in a statistical sense, for the 
N - 2  unknown atoms as Uh normally plays for all 
the atoms. 

This leads us to examine the properties of the 
Fourier series 

(6) 

54 
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where the summation is over T reflexions, the total 
number available. I t  is actually proved in Appendix 
I l l  tha~ these values for the Fourier coefficients give 
the best resolution for the unknown atoms according 
to the criterion of resolution given in the following 
section. 

When there is no atom of known position, but Uh 
is known in sign and magnitude, the expected value 
of cos 2g h-r1 is given by 

cos 2gh .  r i = n~- Uh, 
where e 

2~ 
~ = ~ ,  

a result given by Cochran & Woolfson (1955). 
Similarly, we see that  when the heavy-atom position 

is known the expected value of cos 2~rh-r~ is 

=n~ {iUh[ tanh ( ] 

The expected value of ar at the centre of the j th  
atom is 

The symboIs to the right of the averaging bars are 
the variables over which the averages are taken. 

The probability P(U, C)dUdC that  IUhl lies be- 
tween U and U+dU, while at the same time IChl lies 
between C and C+dC, is found in Appendix I. 

Then 

the modulus brackets having been dropped on the 
right.h~nd sid~ of ~hi~ ~qu~tion because the qu~n- 
t r i e s  U and C are constrained to be positive by the 
limits of the integration. 

From this we find 

~rj r \ ~ 3  e 3jnjOh Tf~=o,Je=otU 
x exp ( U~ + C ~  2e' ] cosh (~, ) (4n~-C')-½dUdC . (9) 

Substituting 

U =  ~/(e')X, C = 2 n R s i n 9  and 2 n B / ~ / e ' = a ,  

we have 

~rj = 2 hi Oh T \ze / 

( Xg"+a~ sin's°)cosh (Xa sin 9)dXd , .  (I0) x exp - 2 

I t  may be shown that  if s'-½ (which is of the order N½) 
is greater than 3 the upper limit of X in (10) may be 
replaced by ~ without appreciable error. Then 

~r i = njOh T~v(c~), (11) 

where F(~) is a function of ~ given by 

~(~) = 2 {X tanh (Z~ sin ~ ) - ~  sin 9} ~ 
X=O ¢~=0  

( X~+°~2sineg) cosh(X~sinqg)dXdg. (12) × exp - 2 

For a Fourier synthesis with coefficients OhUh, 
correct in amplitude and phase, the value at the centre 

~ h  
of the j th  atom is niOh T. The value of F(a) is thus 
the ratio of the expected height of an atomic peak 
given by the function ar to that  given by the Fourier 
synthesis with correct amplitudes and phases. 

Luzzati (1953) showed that  the expected height of 
an atomic peak given by the straightforward applica- 
tion of the heavy-atom method is Z times the true 
height, where Z is a function of a;  Z is tabulated by 
Luzzati in terms of the variable 9 (= ½as). A compar- 
ison of F(a) and Z for various values of a is given in 
Table 1. This table shows that  for values of ~ less 

Table 1 

o, ~,(o,) x ~(o,) /*,,Ig:," 
0.00 0.000 0-000 1.000 2-00  
0.25 0.057 0.128 0.869 1-74 
0.50 0.187 0-246 0.795 1-57 
0.75 0.330 0"359 0.746 1-38 
1.00 0.454 0.457 0.724 1-25 
1.50 0.632 0-609 0.761 1.14 
2.00 0-733 0.715 0.802 1-07 
3'00 0'832 0'818 0'870 1'04 
4.00 0.873 0-870 0.911 1.02 
6.00 0.918 0.915 0.939 1.02 
8.00 0.939 0.936 0-954 1-01 

oo 1.000 1.000 1.000 1-00 

than about unity the normal application of the heavy- 
atom method gives higher peaks for the unknown 
atoms than does ar. But this alone cannot be used as 
a criterion of resolution: the size of peaks may be 
doubled by doubling all the coefficients without any 
gain in resolution whatsoever. The fair comparison of 
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the resolution in the two cases is dealt with in the next 
section. 

The criterion of resolut ion 

The criterion of resolution for a particular atom, as 
shown by a function Qr, which will be used here, is 
similar to one proposed by Cochran (1952). This is 
expressed as the value of 

~ / _ ~ r  (13) 

The greater the value of #, the more the atom stands 
out in comparison to the root-mean-square fluctuation 
of the function about its mean value. 

For the function ar given by (7) it can be shown 
that  

The application of the results of equations (8), (11) 
and (14) to (13) gives 

,u = njO--h h ~T~(~)[½ (15) 
( e , ~ j  • 

I t  should be noted that  ar has the characteristics of 
a difference synthesis: the heavy atom does not con- 
tribute to the Fourier coefficients and so does not 
appear. In the case of yr, the function produced by 
the Fourier series with coefficients So[ Uh], the heavy 
atom does appear, enhanced in fact above its normal 
size. If the value of # was found for this function the 
value would be greatly affected by the large contribu- 
tion of the heavy-atom peak to the divisor of equation 
(15). This can be avoided by considering the value of 
/z for 7r, the Fourier coefficients of which are 
Sc(] Uh]-  ]Ch]}. This will be identical with yr with the 
heavy-atom peak removed. 

I t  is shown in Appendix I I  that  

/ Z ~ , =  n jOh  z , (~X) ' 

where ~(c~) is a function of a. The efficiency of ar 
compared with 7~ in resolving atoms may be ex- 
pressed as 

#_z_~ = {~(c~)~e(c~)}½, (17) 

/z¢ Z 

which is tabulated in Table 1, together with ~(c~). 
I t  can be seen that  for small values of c~ the function 

ar is substantially better than yr (or yr). For larger 
values of c~ the two functions become more equal in 
efficiency, each approximating to the completely cor- 
rect answer. 

Pract ical  e x a m p l e s  

The example considered here is a two-dimensional 
structure containing 12 atoms per unit cell with space 
group P i .  There are 2 known atoms related by the 
centre of symmetry for which 

f B  = n a  exp [ - s i n  e 0] , 

and 10 others for which 

fj = n i exp [ - s i n  2 0] . 

The three cases considered are, n a  = nj ,  n ~  = 2 n  i 

and n a  = 3 n  i, for each of which the functions ar and 
7r are calculated and shown in Fig. 1. The indices 
of the reflexions used are those for which h2+k ~ < 100. 
The values of /~r, and #a for the j th  atom are as 
follows: 

n a =  n i: #~,= 1.66, # ~ = 2 . 4 3 ;  
n~ = 2hi: /z~, = 3.00, /z, = 3.51; 
nB = 3nj: #,, = 3.70, # ,  = 4-00. 

I t  will be noticed from Fig. 1 that  the values of/z 
do give a good indication of the resolution to be ex- 
pected. The critical value of # at which an atom 
becomes clearly seen is about 3. This example shows 
clearly the advantage of using the function ~r rather 
than yr for finding the unknown atoms. The theoretical 
values of # enable one to predict whether or not the 
structure will be found from the position of the known 
atom. 

More than two known a t o m s  

I t  is fairly evident that  the coefficients to be used in 
this case are, as before, 

where 
C h  = ~ nj cos 2zh .  rj 

and is the contribution of the k known atoms. The 
calculations for # have not been carried out in this 
case, although it is expected that  the advantage factor 
will be of the same order as in the case of k = 2. The 
quantity corresponding to c~ will now be 

(2 • n~ / ~ n~)½. 
k lV--k 

Conclus ions  

An examination of Fig. 1 shows the advantages of ar 
compared with yr for finding the unknown atoms. 
Part  of the improvement may be due to the fact that  
~r excludes the heavy atom and the diffraction ripples 
associated with it. However, this will only interfere 
with tke recognition of a structure if one ,of the 
lighter atoms is close to the heavy atom, and the 
theory comparing the efficacy of the two functions 

54* 
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Fig .  1. T h e  f u n c t i o n s  s h o w n  are  as  fol lows:  

(a) 7 r  for  n H =  n : ;  (b) a r  for  n i l =  n l ;  

(c) 7 r  for  n i l =  2hi;  (d) ~ r  for  n H =  2hi;  

(e) 7 r  for  n E =  3n]; ( f )  ~ r  for  n B =  3n i .  

T h e  con tou r s  are  d r a w n  a t  u n i t  i n t e rva l s  of these  func t ions .  T h e  zero a n d  n e g a t i v e  c o n t o u r s  are  d r a w n  as d a s h e d  lines.  D o t t e d  
c o n t o u r s  are  d r a w n  r o u n d  t h e  ' h e a v y '  a t o m  a t  3, 6, 9 . . . .  e tc .  un i t s .  

has allowed for the removal of the heavy atom from 
7r to give the function 7~. The advantage of ~r may, 
in fact, be more evident in theory than in practice. 
If /%, and ffa are both low then, albeit that  ff~/#v 
may be fairly large, neither function will reveal the 
structure; if they are both large the structure may be 
clearly seen in ar and in 7r and again there is no real 

advantage. I t  is for intermediate values of ff that  some 
practical advantage may be obtained. Another point 
to be considered in this respect is that  7r itself is not 
often calculated; when the indication of a sign is weak 
because [Ch] is small the appropriate term is usually 
omitted from the Fourier series. I t  can be seen that  
the determination of the Fourier coefficients for ar 
really amounts to putting discretion on to a mathe- 
matical basis. If [Chl is small the term goes in with 
small amplitude whereas if ]Ch] is large the amplitude 
approximates to Sc{[Uh[--[Ch[} ,  which is the value it 

would have if the sign was given w]th certainty. For 
this reason ar may not be so much better than the 
function one would normally calculate, although there 
can be little doubt that  it would be better to some 
extent. A point which is definitely clarified by the 
results of this paper is that  the indiscriminate ac- 
ceptance of signs hinders the process of structure 
determination: it does not pay to put in all the Fourier 
coefficients in the first place, a practice which is not 
unknown amongst crystallographers. 

I would like to express my gratitude to Dr M. V. 
Wilkes for allowing me to use the E.D.S.A.C. at the 
University Mathematical Laboratory, Cambridge. I am 
also indebted to the Managers of the I.C.I. Fellowship 
Fund of the University of Cambridge for the award 
of a Fellowship during the tenure of which this work 
was done. 
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A P P E N D I X  I 

The probabili ty tha t  ]Ca] lies between C and C+dC 
is the probabili ty tha t  cos 2 g h .  r~  lies between C/2nn 
and (C+dC)/2n~. This is 

PicldC = _2 (4n~_C2)_½dC. 

The value of 
.v 

.~ n] cos 2 z h .  r1 

must  then be either S~(IUa]-[C,,1} or --S~(IU,,]+[Ch[} 
to give ]Ual = U, depending on whether UaCh is 
positive or negative. 

From the distribution of structure factors given by 
Wilson (1949) the probabil i ty tha t  ]U~] will lie be- 
tween U and U+dU for a fixed value of C is then 

PlvldU= (2ze')-½ [exp{ -(IU[+ICI)2~-2e; J 

The probabili ty tha t  ICh] will be between C and 
C+dC while at  the same time I Uhl is between U and 
U+dU is thus P(U, C)dUdC = PivlPicldUdC. 

Then 

P( U, C)dUdC = ((~a--~)[exp { (' U,+[C, 2e' )2} 

x (4n~-C2)-½dUdC. 

A P P E N D I X  II  

}'~ = .~, ScOa(I Ua]- IC,,I) cos 2zh"  r .  
T 

Since the terms on the right-hand side occur in 
equivalent pairs (h and - h )  we may  write 

2 2 sc0a(I Ual-ICal) cos 2=h. r ,  

the summation now being over half the total  number 
of reflexions. 

Then 

(~)~ = 4 { 2  ScO,,(IU,,I-IChl) cos 2~zh. r} ~ 
½T 

= 4.~ O~(]U,,]-[C,,I) 9 cos 9" 2gh"  r 
½2 

+ 2 ~ OaOh,(lUh[--]Ch[)(lVa,[--]Ca,[) 
× (cos 2r~(h + h')" r+cos  2 z ( h - h ' ) .  r}. 

We now use the results 

cos ~ 2 ~ h - r ~ = ½  and cos2~zh.r"  = 0 .  

Then 

rT/" = 2_y Of,(IUhI--IChl) ~ 
½T 

= T~h h ( IU , , I -  IChl) "h . 

If we assume tha t  the values of Uh and Ca which 
occur for the structure have the expected theoretical 
distributions, we may  replace (IUhl--IChl) 2h by 

(IV,,I-IC.I) 2u'c. 

Dropping the subscripts, we may write 

(iUl-iCl) 2 -~  + c  - 2 1 G e l ' .  

l~ow 
N 

2 -U-~U =.X nj = e, 
y=l 

~ =  2n~ 
a n d  

UG = nj cos 2 ~ h . r j  (2rib cos 2~h .  rB) 

= 4n} cos 2 2~:h. r e + 2  ..~ nBn i cos 2~h .  r n cos 2~h .  r j .  
]=3 

If we consider a fixed value of C, then by  the ap- 
plication of the central-limit theorem we may  find the 
probabili ty tha t  UC lies between UC and UC+dUC. 
This is 

P(UC)dUC = (2~e'X)-½ exp { -  (UC-2X)2~ }au~" ,~ 

where X = 2n• cos 9 2~h.  r H. 

From this we find tha t  

P(IUCI)dlUCI = (2~e'X)-* [exp {-(IUCI-2X)~y~_~, J 

+ exp { -  (I ucI + 2x)~ 
.1 dl UC] . 

The mean value of I UCI for a fixed value of C is then 

+ exp{-(IUCl+2X)2~] 
~-x-~e' /J IUCld lUCI  

where 

i 
x 

~(x) = (2z) -½ t__0exp (-½t2)dt 

is the probabil i ty integral which may  be found tabu- 
lated in Uspensky 0937). 
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Then 

1O-~ ~'° \ - - -  + 4xv 

2/~'~ S~ ~o~0~p(-~oos~0)~0 

+ cos~0 ~(g2~ cos O)dO. 

F r o m  this we find then  

( iU[ - ICI )  ~~'* = e + 2 n 5  and 

4/d\' S~ 
= : "  :o 0 oo = 0) 0 

3~'4'I7 cos~0 v(/2~ cos 0)~0, 
9~ d 0 = 0  

and, since ~ = e'+2n~, this becomes 

( IVl_lCl)  ~.''° 

: < oo< o oo o, o} 
~z do=o 

cos 0 exp (-o~ 2 cos ~" O)dO = e'~(o~), 
g r  0=0 and 

where ~(c~) is a funct ion of o¢. This has been calculated 
for various values of ~ by  normal  methods  of numerical  
analysis and  is given for these values in Table 1. 

When  

,:" m ~ , , ~ ( ~ )  
T r  = 

t 

the  expected value of Vrj is given by  

--7" ~ - - h  
~]r] = ~]r j  = njOh T Z, 

and  hence we find 

A~Y I M P R O V E M E : b T T  O F  T H E  ' H E A V Y - A T O M '  M E T H O D  

A P P E N D I X  III 

When  the position of the  h e a v y  a tom is known the  
expected value of cos 2 ~ h -  r a t  the  centre of the  j t h  
a tom is given by  (7) as 

cos 2~h .  ri ~ Sc 

I f  we consider the  funct ion 

fir = ~a~ Ah cos 2 ~ h .  r ,  
T 

(~rj  - -  6 r  = ~ A h X h  
T 

__ r½ 

= Xh, s a y .  

The value of /~aS is then  found from (13) and  is 

T T 

Since mult iplying all the  A ' s  by  a common fac tor  

d(~Y, A~) = 2.a~ AhdAh = 0 for 27 A~, 
T T T 

to be a constant .  

The values of xh will thus  sat isfy the  first  condition 
if Ah/xh is a constant  for all h. 

The funct ion given by  (6) takes  the  value of this 
constant  as unity.  
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d ( . a ~ A h x h ) = ~ a ~ x h d A h = 0  for ~ A h x h  
T T T 

to be a m a x i m u m  

does not  affect the  value of / t~ s, the  problem of max-  
imizing #~  m a y  be expressed as f inding the  m a x i m u m  
value of ~ Ahxh for a f ixed value 27 A ~ .  

T T 

Now 


