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The reaction yielding the ferrous complex which
takes place in solution upon addition of 2,2’-bipyridine
to a solution of a ferrous salt can only lead to the
formation of a stable five-membered ring consisting
of N,~C,—C;-N, and the Fet+ ion if the two nitrogen
atoms are in the cis positions. Since in the solid crystal-
line form the nitrogen atoms lie in the ¢rans positions,
there must be rotation about the C,—C; bond in solution
in order for complex formation to be possible. The
observed length of this bond would indicate that such
rotation would be easily possible in solution.

The molecules in the unit cell of 2,2’-bipyridine
show no unusually close approaches. The shortest
intermolecular distances are 3-11 A between the H,
bonded to the C, in one ring and the C; of the next
molecule, and 3-12 A between H, bonded to C; in one
molecule and H;' bonded to C;' in the next molecule.
Since the van der Waals radius of a carbon atom is
about 1-7 A and that of a hydrogen atom is about
1-3 A, this indicates that the only forces between the
molecules in the crystal are weak van der Waals forces.
This is supported by the low melting point (69-5° C.)
of this compound and also by the tendency of these
crystals to sublime slowly in air at room temperatures.
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The authors wish to express their thanks to Dr
A. E. Lessor, Jr for his aid in the calculations in-
volved in this structure determination.
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An Improvement of the ‘Heavy-Atom’ Method of Solving Crystal Structures

By M. M. WooLrrson*
Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Recetved 26 January 1956)

For the normal heavy-atom method of solving crystal structures the Fourier series, whose coeffi-
cients are given in moduli by the observed intensities and in phase by the heavy-atom contribution,
is summed. It is shown that a Fourier series with coefficients quite different from these shows the
unknown part of the structure more clearly. A criterion for determining the degree of resolution
of a structure is given and the advantage of the new series is demonstrated both theoretically and

by means of practical examples.

Introduction

The ‘heavy-atom’ method of solving crystal structures
is most frequently used for centrosymmetrical struc-
tures when one pair of atoms is sufficiently heavy to
be detected by the Patterson function. With the ob-
served structure amplitudes and phases given by the
contribution of the known atom, a Fourier synthesis
is calculated from which the position of the remaining
atoms may be found. If the known atom is not heavy

* Now at the Physics Department, College of Science and
Technology, Manchester 1, England.

enough to dominate the phases of the complete struc-

ture, the remaining atoms will not show themselves.
On the other hand, if the known atom is too heavy
the relative contributions of the unknown atoms to
the structure factors will be comparable in size with
the experimental errors of the latter. The peaks of the
Fourier synthesis due to random errors will then be
of the same order as a peak height for one of the
unknown atoms, whose positions will not be deter-
mined with any certainty.

Luzzati (1953) has given a theoretical treatment of
the heavy-atom method as part of a more general
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paper which deals with the resolution of crystal struc-
tures when the positions of some atoms are known.
The cases he considered are:

(a) two known atoms in a centrosymmetrical struc-
ture;

(6) many known atoms in a centrosymmetrical struc-
ture;

(c) many known atoms in a non-centrosymmetrical
structure.

Luzzati suggested a criterion for deciding the degree
of resolution which would be obtained in each of these
cases.

The present paper deals primarily with case: (a),
and will briefly mention case (b). It will be shown that
a Fourier synthesis with amplitudes and phases dif-
ferent from those normally used resolves the structure
more clearly than the usual ‘heavy-atom’ synthesis.
A criterion, different from that used by Luzzati, will
be used to compare the resolution of structures in the
two cases, both in theory and by means of practical
examples. It will be assumed that there are no ex-
perimental errors in the observed data.

Derivation and properties of the new Fourier
series

We shall consider a centrosymmetrical structure with
N atoms per unit cell and with two atoms (related by
a crystallographic centre of symmetry) in known
positions. The atoms are assumed to have the same
shape so that, for the jth atom,

n; =fi/7£fi

is a constant throughout reciprocal space.
We may write
Ji = Oun;, ()

where 0y is a function of sin 6, or alternatively of the
position in reciprocal space denoted by the vector h.
Then

N N
Fy =2 ficos2nh-r; = O X njcos 2znh-r; = 6y Uy,
j=1 j=1

where Uy is the unitary structure factor.
. However,

N
Un = X njcos 2zh- r;+2ng cos 2nh-rg,
=3

where the subscript H denotes the value of the quan-
tity for the atoms of known position.

Then
N
2 njcos 2nh-r; = Up—Cy
=3
where
Cy = 2ng cos 2zh vy .
ACH
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The sign of Uy is unknown, but if U nCh is positive
and 8, is the sign of Cy then

¥
2 njcos 2nh-r; = S:{|Un|—|Chl}, 2)
j=3
while if UyCy is negative
N
2 njcos 2ah-r; = -8, {|Uy| + |Chl} . (3)
j=3

The ratio of the probability that UyCy is positive,
P (UnCh), divided by the probability that UnCy is
negative, P_(UnCh), may be found from the prob-
ability distribution of structure factors given by Wilson
(1949), and is

l 2
P, (UnCh) =eXP{_2—s'(IU"[—IOhD }
P—(Uhoh) exp{_ II(IUb]+IChI)2}

= exp(; thOh]) s

2e
where
N
& =3nl.
=8
Since
P (UnCn)+P_(ColUy) =1,
we find
UnC,
Po(Unh) = d+ tanh (122200) g
and
UnC
P_(UyCh) = 3—} tanh (""9%"') . ®)

For a given pair of values |Uy| and Ch, the average
value of

N
2 n; cos 2xh - r;
will be j=3

S{|Unl|~|Cul} Py (UnCr)—8{| Un| + [Cul} P_(UyCh) ,

or

N
3 njcos2mh-r; = Sc{w.,] tanh ('U"O"') -10,,{} .

j=3 e

In the case where the sign of Uy, is indicated Dby the
value of Cy it can be seen that the quantity

8.4 0] e (12252)) _ 0, )

is playing the same role, in a statistical sense, for the
N —2 unknown atoms as Up normally plays for all
the atoms.

This leads us to examine the properties of the
Fourier series

op = %0.,Sc{yU.,| tanh (M) - [0.,1} cos 2zh-r |

d (6)
54
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where the summation is over 7 reflexions, the total
number available. It is actually proved in Appendix
IIT that these values for the Fourier coefficients give
the best resolution for the unknown atoms according
to the criterion of resolution given in the following
section.

When there is no atom of known position, but Uy
is known in sign and magnitude, the expected value
of cos 2zh-1; is given by

———— n.
cos2zh-r; = ;’ Un,
where

- 2
8=2nj:
i=1

a result given by Cochran & Woolfson (1955).
Similarly, we see that when the heavy-atom position

is known the expected value of cos 2zh-r; is

[UnCh
8,

cos2mh T, =lifsc{|v.,| tanh( ) —10,.|} .

The expected value of o, at the centre of the jth
atom is

|UnCh

8'

o= 0,,3,,.{]U,.| tanh( ) - [C’h]}cos -t
r

2
- ’%’E"z{w tanh ('U“,O “') ~(cul}
€ T

€

- U e
=28 {iow sann (22 ol @

The symbols to the right of the averaging bars are

the variables over which the averages are taken.
The probability P(U, C)dUdC that [Uy| lies be-

tween U and U+dU, while at the same time |Cy| lies

between C and C+dC, is found in Appendix I.
Then

o (7 e
{0 (59 -of v

the modulus brackets having been dropped on the
right-hand side of this equation because the quan-
tities U and C are constrained to be positive by the
limits of the integration.

From this we find

2 —n, [t g UcC 2
a,,.=2l/<n—36,—3)n,.ohfps S {Utanh(T)—O’}

U=0J(C=0

2 2
% exp (_ 921“0) cosh (ZO) (dn—C?)—tdUdC. (9)

Substituting
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U=V@E)X, C=2ngsing and 2ng/)e = «,

we have

2 —h
Or; = 2]/(773) n;0p T

1Y pn/2
X S g {X tanh (X« sin @) —« sin @}?
x=0dc=0
( X242 sin? ¢
X exp | —————p——

It may be shown that if &'~% (which is of the order N#)
is greater than 3 the upper limit of X in (10) may be
replaced by co without appreciable error. Then

) cosh (X« sin p)dXdep. (10)

o5 = nn Ty (&) , (11)

where y(x) is a function of « given by

p(a) = 21/(7%3) So;:o Snlz {X tanh (X« sin g)—« sin p}?

p=0

X24 x2 sin?

X eXp (— 3 (p) cosh (Xo sin p)dX dep. (12)

For a Fourier synthesis with coefficients 0,0,
correct in amplitude and phase, the value at the centre

of the jth atom is njf)hhT. The value of y(«) is thus
the ratio of the expected height of an atomic peak
given by the function ¢, to that given by the Fourier
synthesis with correct amplitudes and phases.
Luzzati (1953) showed that the expected height of
an atomic peak given by the straightforward applica-
tion of the heavy-atom method is y times the true
height, where y is a function of «; y is tabulated by
Luzzati in terms of the variable ¢ (= }a?). A compar-
ison of y(x) and y for various values of « is given in
Table 1. This table shows that for values of « less

Table 1

o p(x) x &) Hol py
0-00 0-000 0-000 1:000 2:00
0-25 0-057 0128 0-869 174
0-50 0-187 0-246 0795 1-57
075 0-330 0-359 0-746 1-38
1.00 0-454 0-457 0724 1-25
1-50 0-632 0-609 0-761 1-14
2-00 0-733 0-715 0-802 107
3:00 0832 0818 0:870 104
4-00 0-873 0-870 0-911 1-02
6-00 0-918 0-915 0-939 1-02
800 0-939 0-936 0-954 1-01

o 1-000 1-000 1-000 1-00

than about unity the normal application of the heavy-
atom method gives higher peaks for the unknown
atoms than does ¢,. But this alone cannot be used as
a criterion of resolution: the size of peaks may be
doubled by doubling all the coefficients without any
gain in resolution whatsoever. The fair comparison of
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the resolution in the two cases is dealt with in the next
section.

The criterion of resolution

The criterion of resolution for a particular atom, as
shown by a function g., which will be used here, is
similar to one proposed by Cochran (1952). This is
expressed as the value of

=
SR (st

The greater the value of 4, the more the atom stands
out in comparison to the root-mean-square fluctuation
of the function about its mean value.

For the function ¢, given by (7) it can be shown

that
) —101,1}2“’0. (14)

The application of the results of equations (8), (11)
and (14) to (13) gives

= n,E,"{T”’(“)}*.

nsk
&0

It should be noted that o, has the characteristics of
a difference synthesis: the heavy atom does not con-
tribute to the Fourier coefficients and so does not
appear. In the case of y,, the function produced by
the Fourier series with coefficients S,|Uy|, the heavy
atom does appear, enhanced in fact above its normal
size. If the value of u was found for this function the
value would be greatly affected by the large contribu-
tion of the heavy-atom peak to the divisor of equation
(15). This can be avoided by considering the value of
p for yr, the Fourier coefficients of which are
Se{|Un|—|Chl}. This will be identical with y, with the
heavy-atom peak removed.

It is shown in Appendix IT that

Ky V8 X S’O—ﬁhé((’f) ’

where &(x) is a function of «. The efficiency of o,
compared with yr in resolving atoms may be ex-
pressed as

(13)

[UnChl
8,

(0r—ar)¥ = Tﬁ"{]U,,]tanh (

(15)

(16)

b {p()E@)
My X ’

which is tabulated in Table 1, together with &(x).

It can be seen that for small values of « the function
or is substantially better than pr (or ;). For larger
values of & the two functions become more equal in
efficiency, each approximating to the completely cor-
rect answer.

(17)
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Practical examples

The example considered here is a two-dimensional
structure containing 12 atoms per unit cell with space
group PI. There are 2 known atoms related by the
centre of symmetry for which

fa = ngexp[—sin2 0],
and 10 others for which
fj = n; exp [—sin? 6] .

The three cases considered are, ng = n; ng = 2n;
and ng = 3n;, for each of which the functions ¢, and
yr are calculated and shown in Fig. 1. The indices
of the reflexions used are those for which A2+ k2 < 100.
The values of u, and u, for the jth atom are as
follows:

ng = M U,y =166, u, = 2-43;

Ng = 277/7. My = 3'00, K = 3'51;

ng = 3n;: uy = 370, u, = 400.

It will be noticed from Fig. 1 that the values of u
do give a good indication of the resolution to be ex-
pected. The critical value of y at which an atom
becomes clearly seen is about 3. This example shows
clearly the advantage of using the function o, rather
than y, for finding the unknown atoms. The theoretical
values of u enable one to predict whether or not the
structure will be found from the position of the known
atom.

More than two known atoms

It is fairly evident that the coefficients to be used in
this case are, as before,

.60 {1Vl tanh ('U“C"') ~(cal}

eI

where
Cn =2 n;cos2xh-r;
P

and is the contribution of the k¥ known atoms. The
calculations for y have not been carried out in this
case, although it is expected that the advantage factor
will be of the same order as in the case of k£ = 2. The
quantity corresponding to « will now be

(2Zni Znd)t.
PR )

Conclusions

An examination of Fig. 1 shows the advantages of o
compared with y, for finding the unknown atoms.
Part of the improvement may be due to the fact that
or excludes the heavy atom and the diffraction ripples
associated with it. However, this will only interfere
with the recognition of a structure if one .of the
lighter atoms is close to the heavy atom, and the
theory comparing the efficacy of the two functions

b54*
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Fig. 1. The functions shown are as follows:
(a) yr for ng = nj;
(¢) yr for ng = 2n;;
(¢) yr for ny = 3n;;

) or for ng= n;
(d) or for nyg = 2n;;
(f) or for ng = 3n;.

The contours are drawn at unit intervals of these functions. The zero and negative contours are drawn as dashed lines. Dotted

contours are drawn round the ‘heavy’ atom at 3,6, 9, ...

has allowed for the removal of the heavy atom from
yr to give the function yr. The advantage of or may,
in fact, be more evident in theory than in practice.
If u, and p, are both low then, albeit that u./u,
may be fairly large, neither function will reveal the
structure; if they are both large the structure may be
clearly seen in oy and in p; and again there is no real

advantage. It is for intermediate values of u that some
practical advantage may be obtained. Another point
to be considered in this respect is that y; itself is not
often calculated; when the indication of a sign is weak
because |Cy| is small the appropriate term is usually
omitted from the Fourier series. It can be seen that
the determination of the Fourier coefficients for oy
really amounts to putting discretion on to a mathe-
matical basis. If |Ch| is small the term goes in with
small amplitude whereas if |Cy| is large the amplitude
approximates to S{|Un|—|Cn|}, which is the value it

etc. units.

would have if the sign was given with certainty. For
this reason ¢r may not be so much better than the
function one would normally calculate, although there
can be little doubt that it would be better to some
extent. A point which is definitely clarified by the
results of this paper is that the indiscriminate ac-
ceptance of signs hinders the process of structure
determination: it-does not pay to put in all the Fourier
coefficients in the first place, a practice which is not
unknown amongst crystallographers.

I would like to express my gratitude to Dr M. V.
Wilkes for allowing me to use the E.D.S.A.C. at the
University Mathematical Laboratory, Cambridge. I am
also indebted to the Managers of the I.C.I. Fellowship
Fund of the University of Cambridge for the award
of a Fellowship during the tenure of which this work
was done.
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APPENDIX I

The probability that |Cy| lies between C and C+dC
is the probability that cos 2zh - ry lies between C/2ng
and (C+dC)[2ng. This is

The value of

N
> n; cos 2rh - 1;
=8
must then be either S,{|Up|—|Cp[} or —8.{|Un|+|Cnl}
to give |Un| = U, depending on whether UnCh is
positive or negative.
From the distribution of structure factors given by
Wilson (1949) the probability that |Ug| will lie be-
tween U and U-+dU for a fixed value of C is then

_(lUl+l0l)2}
2¢’

+ exp {—w” av .

Py dU = (2ne')} [exp{

2¢’

The probability that |Cy] will be between C and
C+dC while at the same time |Uy| is between U and

Then
P(U, 0)dUdC = V(nfe) [exp {_ Qlﬂ_gr;_wnz}
+exp {-— %&)Ci)z”(‘lnﬁ—CQ—%dU(lo

2 U2+ C? uc
=2 V(;a?) exp (———58, > cosh (7)

x (4n%—C2)~*dUdC .

APPENDIX II
Ve = 2 Scfn(|Un|—|Chl) cos 2zh-r .
T

Since the terms on the right-hand side occur in
equivalent pairs (h and —h) we may write
2280611(“-711'—]011[) cos 2zh-r,
3T
the summation now being over half the total number

of reflexions.
Then

(7e)? = 4{ 2 8.0u(]Un|—|Chl) cos 2zh-r}?
3T
— 4.3 62(|Up|—|Chl)? cos? 2zh 1
3T

+ 2”:‘:“_911911'(]Uhl—lohl)(th'l—ICh'l)
x {cos 2zr(h+ ') r+cos 2z(h—h')-r}.
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We now use the results
cos? 2zh -1 = 3 and cos 2zh-r =0.

Then
7 = 2 % 63 Unl—[Cal)
—h———————},
= T6g (|Unl—|Cn|)? .
If we assume that the values of U, and Cp which
occur for the structure have the expected theoretical

distributions, we may replace (]Uh|—|0h|)2h by
(IUsl—=1Cul)®"".

Dropping the subscripts, we may write

(1T1—1CE"" = 2"+ C**—2/UC] ".
Now

. N
U = Sn2=c¢,
j=1

Cz° = 2n%
and

N
UC = {2 n; cos 2mh - ri} (2ng cos 2rh ryg)

j=1
N
— 4n2 cos? " . .
= 4n cos? 27h rH+22,:ianicos 27h-rgcos 2xh- ;.
7:

If we consider a fixed value of C, then by the ap-
plication of the central-limit theorem we may find the
probability that UC lies between UC and UC+dUC.
This is

P(UC)AUC = (2&' X)~ exp{—

where X = 2n% cos® 2nh - rg.

(UC—2X)?
_EXT'—}"ZUC ;

From this we find that
- (|UC]—2X)2}
UC| = 4 b3
P(UC)A|UC| = (2re' X) [exp{ oXs

(|UC|+2X)?

+ exp{— s }d]UC] .

The mean value of [UC| for a fixed value of C is then
[ex { ([UO[—ZX)2}
P~ 2X¢'

(|UC|+2X)?
2X¢'

X'\t 2X X
=<2n> exp(— 6,)+4X<p(2‘/—8—,) s

where

— o0
[T0" = (2ne'X)~ S
10C|=0

+ exp{—~ H1woiawel

x

exp (—3t%) dt
=0

t=

o) = (27:)—*8

is the probability integral which may be found tabu-
lated in Uspensky (1937).



- [l 2 - 3o

ni g
_2 <§~> ng S2 cos 0 exp (—«2 cos? 0)df
AT =0

2 T
+ 16n5 SZ cos? 0 ()2« cos 0)do .

=0

From this we find

(u=icn*’

= e+2n¥

"} 5
_4 (8_) ng S2 cos 6 exp (—a2 cos? 0)d0
b=0

JT\TT

3

2 o7
—%Sz cos? 6 @(}/20 cos 6)dO ,
T Jo=0

and, since ¢ = &' +2n%, this becomes

(01=102""

3

=g [l-l—oc2 {1—— §SE cos? 0 ()2« cos G)de}
7T Jo=0

3

\.2 cos 0 exp (—o? cos? O)dO:I =&'&w),

6=0

%A?

where £(«x) is a function of «. This has been calculated

for various values of x by normal methods of numerical

analysis and is given for these values in Table 1.
‘When

73T ash ,
ye =TOh e€(x)
the expected value of yy; is given by

— —h
i = vy = nbn T,

o
ety e @)

and hence we find

Uyt =
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APPENDIX III

When the position of the heavy atom is known the
expected value of cos 2zh - r at the centre of the jth
atom is given by (7) as

- 1sl}

= Zp, say .

- UnC
cos 2zh-r; = | l;, h])

—~Sc{[U.,| tanh (

If we consider the function
. =2 Apcos2zh-r,
r
then

O'l-)—O'r = ZAhxh
and

{(0r o,)? } —(ZA 2.
The value of u, is then found from (13) and is

o = 2 Anzn[(Z AR .
T T

Since multiplying all the A’s by a common factor
does not affect the value of u,;, the problem of max-
imizing u,; may be expressed as finding the maximum
value of ZAhxh for a fixed value 2 A:.

Now
d(Z Apzn) = 2 2ndAn =0 for X Apap
T T T

to be a maximum
and
d(ZA 2) = 22AhdAh =0 for ZAh

to be a constant.

The values of z; will thus satisfy the first condition
if Apfan is a constant for all h.

The function given by (6) takes the value of this
constant as unity.
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